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Time-Resolved Dynamics of the Vesicle Membrane During Individual
Exocytotic Secretion Events, as Extracted from Amperometric Monitoring of
Adrenaline Exocytosis from Chromaffin Cells

Christian Amatore,* Yann Bouret, and Laurent Midrier

Abstract: In chromaffin cells, adrena-
line is known to be released through
docking and then fusion of a secretory
vesicle to the cytoplasmic membrane of
the cell. Here we propose a method for
the calculation of the dynamics of the
vesicle membrane during the fusion
from amperometric currents observed
during individual exocytotic secretion
events. The method is based on recog-
nition of the fact that the overall current
spike shape results from the convolution
of the membrane dynamics with the rate
of diffusion and exchange of the cat-
echolamine cation inside the matrix core

integral with which one deconvolutes
the experimental amperometric data.
An alternative numerical treatment
through Brownian motion simulations
dispenses with the need for this simpli-
fying approximation. Combination of
both approaches yields the membrane
dynamics with a precision and a time
resolution never achieved before. The
peculiar dynamics of the vesicle mem-
brane hint that exocytotic events are
regulated by the swelling of the matrix
polyelectrolyte core of the vesicle (al-
though this important component is
transparent in the analysis proposed

here); this points to the important role
of matrix swelling in exocytotic behav-
ior. In particular, the effect may be
elaborated to offer a new energetic
interpretation of the transition between
pore release and fusion release: secre-
tory vesicles which involve pores and
matrices similar to those of the adrenal
cells investigated here can be separated
into two classes according to their radius
and catecholamine content. Small vesi-
cles (<ca. 25 nm radius, and containing
<ca. 20000 molecules) should always
release their contents through pore
docking; larger vesicles should always

of the vesicle. This convolution can be
treated analytically thanks to a reason-
able approximation on the relative time
scales of the opening function and
diffusion; this leads to a convolution

Introduction

Regulated exocytosis of neurotransmitters commands the
communication between neurons. As in neurons, in chromaf-
fin and beige mouse mast cells which are current biological
models for the investigation of neuronal exocytosis, the
cationic catecholamine neurotransmitter is encapsulated in
secretory vesicles present in the cytoplasm of the cell; it is
contained in a polyelectrolyte gel matrix which fills the inside
of the vesicle.l'?l Investigations of exocytotic events on
chromaffin and mast cells through patch-clamp techniques
have established that following stimulation of the cell by
calcium ions,”! the intracellular secretory vesicles dock with
the membrane of the cell and connect to the extracellular
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fuse, unless another mechanism closes
the pore before ca. 20000 molecules of

catecholamine have been released.
secretory

medium via a pore that passes through the two membranes in
contact. This creates a nanometric channel whose diameter
remains constant during release, since it is imposed by the
pore architecture.”l This pore allows the release of the
cationic catecholamine neurotransmitter into the extracellu-
lar fluid > and therefore also provokes the simultaneous
entrance of hydrated cations into the vesicle matrix, a process
necessary to maintain electroneutrality within the vesicle
matrix.

The release of biologically important molecules by cells can
be monitored by cyclic voltammetry or amperometry at
carbon-fiber ultramicroelectrodes.[* "¢ Amperometric
monitoring of exocytotic events at chromaffin cells shows
that in 20-30% of the eventst™ a constant flux of neuro-
transmitter is released at the beginning of the exocytosis,
presumably through the initial pore. Indeed, this phenomenon
can be rationalized on the basis of the analogy with steady-
state spherical diffusion at ultramicroelectrodes. The radius
(5+1 A) of the pore determined through this electrochemical
analogyP? matched extremely closely that derived from
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patch-clamp measurements,['* 7l although the two techniques
are totally independent: patch-clamp sees the pore presence
through modification of the capacitance of the patched
membrane area, but is blind to the flux of catecholamines
through this pore; conversely, amperometry is blind to the
pore opening but sees the flux of neurotransmitter that
ensues. Patch-clamp measurements indicate that the initial
pore may close again; this observation is rationalized as the
undocking of the vesicle from the cell membrane. Generally
such events (docking/undocking) are not easily recognized on
amperometric monitoring traces when they occur alone.
However, when a pore release is observed in amperometry
(~20-30% of the events), a few milliseconds after the initial
opening of the pore one observes a sharp increase of the
current (see sketch in Figure 1), followed by a smoother
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Figure 1. Schematic representation of an individual exocytotic secretion
event monitored by patch amperometry, adapted from an original figure
published in ref. [4h]. The current response (pA scale) as a function of time
(top left) indicates the two components (foot and spike, see text) of the
response of a chromaffin cell stimulated by Ca?*, and is shown in parallel
with the change of the patched area capacitance (bottom left) measured (fF
scale) simultaneously by patch-clamp. On the right-hand side are sketched
the four stages of the exocytotic event during each of the four domains
labeled 0 to III on the left-hand side of the figure (note that the various
components are not depicted to scale).

decrease of the flux, so that the main amperometric signal
(termed the spike) is shaped as an exponentially modified
gaussian™ that follows the smaller constant current plateau
(termed the foot) which corresponded to the release by the
pore. In most amperometrically detected events (~70-80%)
only the spike component is observed, which can be explained
by assuming that in most cases the duration of the pore is in
the range of a millisecond or less, so that it is merged with the
sharp rising part of the spike and cannot be resolved in the
digitization process (e.g., 1 to 0.5 ms time increments; see
Experimental Section for the experimental current traces).
Since for ~20-30% of the events, the pore current is
observable and has a mean duration of ca. 8 ms, a mean
duration of ca. 2 ms appears a reasonable estimate when
considering the whole set of events.’d Voltammetric measure-
ments have established that the catecholamine released
during the foot and during the spike is the same,[**! namely,
adrenaline for chromaffin cells. Therefore, the specific shapes
of the foot and of the spike represent directly and only the
time variations of the released flux.
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Coupling of patch-clamp and amperometric techniques 1%
has established that the sharp rising branch of the spike
corresponds to a sudden increase of the capacitance of the
patched cell membrane area (see sketch in Figure 1). This
feature is explained as a rapid increase of the patched surface
area due to the incorporation of the vesicle membrane into
the cell membrane by rapid fusion of the two bilipidic layers.
Fusion implies a concomitant unmasking of the vesicle matrix
wall, so that the matrix external surface becomes directly
exposed to the extracellular medium and a larger amount of
neurotransmitter can be released much more rapidly than by
the pore. This increased release flux is reflected by the steep
increase of the amperometric current. During the compara-
tively smoother current decay that follows this sudden rise,
patch-clamp measurements indicate that there is no variation
of the membrane area.™! One may therefore reasonably
assume that the matrix external surface is then fully exposed
to the extracellular solution at this stage, so that the smooth
decrease of the amperometric current features mainly the
slower and slower extraction of the neurotransmitter from the
matrix core.

In summary, the particular shapes of the current spike and
of the foot are thought to reflect the occurrence of three
fundamentally distinct physicochemical processes that are
schematized in Figure 1: pore creation, fusion and unwrap-
ping of the vesicle membrane, and release of neurotransmitter
from the fully exposed polyelectrolyte matrix, the two latter
processes being certainly intimately coupled in producing the
characteristic spike shape. When observable, the amount of
neurotransmitter released during the foot is generally negli-
gible (less than ~1 % )l compared with that released during
the spike, as shown by the relative charges obtained by time
integration of each currents. Thus, in a first approximation the
pore phenomena (foot) can be disconnected from the fusion-
initiated ones (spike) because the foot release is not expected
to alter significantly the whole vesicle bulk (but see below in
Section C of Results and Discussion). Conversely, the two
physicochemical processes leading to the spike characteristic
shape are expected to be intimately coupled. In a previous
work,P these two processes have been uncoupled empirically,
the two components of the spike being arbitrarily (but vide
infra) deconvoluted through fitting to an exponentially
modified gaussian kinetics. Although this choice led to an
excellent fit between experimental and reconstructed spikes,
and afforded a first handle on the physicochemical parameters
that govern the two distinct process, it was not fully
satisfactory because based upon an arbitrary (albeit reason-
able, vide infra) model.

In the present work, we wish to present a more physico-
chemical descriptive model of the spike events for secretion
from vesicles that contain polyelectrolyte matrixes similar to
those of adrenal cells which are considered in this work. We
illustrate how this model can be used for routine extraction
from any amperometric spike of the physicochemical param-
eters that characterize the vesicle and its matrix, but most of
all how it permits the reconstruction of the opening function
of the vesicle, that is, the variation over time of the vesicle
surface area exposed to the extracellular fluid. This yields a
much better definition than could be achieved up till now by
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patch-clamp measurements based on the data reported in the
current literature.® On the basis of this much better
definition, important conclusions can be inferred which
should be valid for most cells containing polyelectrolyte
matrixes similar to those of adrenal cells.

Results and Discussion

A. Theory

L. General framework of the model: In the amperometric
experiments, a carbon-fiber microelectrode of micrometric
size is positioned at the contact of the cell membrane so that
diffusion of the adrenaline cations released from any vesicle
(radius Ry~ 150 nm) fusing under the electrode surface is
extremely fast compared with the half-width of the spikes
(i.e., tyg < tp, With 5 ms < £, <50-60 ms, vide infra) and the
collection efficiency of the electrode is unity for any event
which occurs under its surface.’ 8 Thus, the current spike
(Figure 1) monitored at the electrode through the two-
electron oxidation of the adrenalinel at the electrode surface
[Eq. (1)] reflects directly the flux of release without signifi-
cant filtering by diffusion of adrenaline into the small
extracellular fluid gap.®l Because of the analogy with a real
synapse, such electrochemical systems have been termed
articifial synapses.[%!

HO, o}
OH e+ 2K OH
HO H ——— 0 po
N e N*
SH NH

In addition to the two physicochemical factors that have
been identified above in controlling the current spike shape—
namely, i) the unfolding of the membrane, since this controls
the rate of exposure of the surface area of the gel matrix which
is initially encapsulated by the vesicle membrane; ii) the
diffusion of the neurotransmitter from the inside core of the
matrix towards the external surface area exposed to the
solution—a third one needs also to be considered and relates
to the swelling of the gel matrix['! during the release due to its
hydration and to the exchange of cations.

This third phenomenon may need some explanation. In-
deed, when the matrix is in its initial packed form,[!l the
protonated catecholamine cation is trapped in a compacted
polyelectrolyte matrix whose anionic counterpart in chromaf-
fin vesicles is formed by chromogranin A, a polyanion
consisting of a peptidic backbone bearing a series of
carboxylate groups that compensate the adrenaline cation
electrostatic charges and are also expected to participate in
numerous H-bonding and dipole — dipole interactions with the
adrenaline cation. Thus the polyelectrolyte matrix inside the
intact vesicle is tightly compacted!'!] and the adrenaline cation
is not expected to be able to diffuse with a rate compatible
with the intensity of the current spike (viz., D ucea K
1072 cm?s™!). However, as soon as the gel matrix is exposed
to the extracellular solution, its hydration and the cation
exchange with the monovalent ions present in the extracel-
lular medium are expected to make the polyelectrolyte matrix
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swell. This is well known for synthetic polyelectrolytes!!'!l and
has also been observed visually in giant vesicles isolated from
mast cells in which the matrix swells two to three times in
volume (i.e., ca. 30-40% in radius).l'” Such swelling!®! is
expected to disrupt the cohesion of the matrix and thus to
loosen the interactions between the adrenaline cation and the
polyanionic backbone of the matrix,["!l thus resulting in a
drastic increase of the diffusion coefficient of the cations in
the swollen parts.[! 120]

From the above paragraph it follows that swelling and
diffusion are necessarily intimately coupled, a fact that is fully
documented in gel-swelling kinetic investigations. The matrix
cannot swell locally before diffusion brings an adequate
amount of monovalent ions. Conversely, diffusion of the
adrenaline cation and its replacement by monovalent ions for
electroneutrality cannot occur before swelling of the matrix
allows a significant diffusion coefficient to be achieved locally.
Since a precise experimental investigation of the dynamics of
the gel at hand is presently out of reach for the case of
chromaffin cell vesicles, for our present goal it is sufficient to
decide if one of the two phenomena (diffusion or swelling) is
controlling kinetically the overall mixed phenomena.

This important question has already been answered in a
previous work.Pl Postulating pure diffusion control (i.e.,
assuming an extremely fast local swelling, f.. =R*flE<
tip ~ty= R* D, where f is the coefficient of friction between
the polyelectrolyte network comprising the gel and the gel
fluid, E the longitudinal bulk modulus of the network and D
the average diffusion coeficient of water, ions, and adrenaline
cations in the swollen matrix) affords descending branches
with the correct shapes compared with the experimental
current spikes.l The converse assumption, namely control by
swelling kinetics (i.e., for t,=R*D < t,, ~ tye = R*fIE), af-
fords descending branches incompatible with the experimen-
tally observed ones.’ Thus, on the basis of this earlier result,
the problem at hand can be greatly simplified for chromaffin
vesicles, since at each point where diffusion occurs signifi-
cantly the swelling kinetics can be considered as occurring
infinitely fast compared with the rate of diffusion of ions in
and out the matrix.!"

Moreover, because of the requirement of electroneutrality,
the global concentration of cations is constant. It is then
sufficient to take into account diffusion of the adrenaline
cation alone; this allows further simplification of the phys-
icochemical formulation of the system. In other words, in any
zone where a change of the neurotransmitter concentration
needs to be evaluated (i.e., where its concentration differs
from the initial one), the matrix can be considered in its
swollen state and the diffusion coefficient of the adrenaline
cation taken as that in the swollen matrix. Conversely, where
diffusion does not affect the neurotransmitter concentration,
the matrix is unswollen, and technically a different diffusion
coefficient (D,eq < D) should be considered. However,
since in these zones diffusion, by definition, has not yet
altered the concentration of adrenaline, a change from D ,ceq
to D isirrelevant because the flux from these unswollen zones
is nil. Therefore, within the framework of the above assump-
tion on relative kinetics of diffusion and swelling, it is
equivalent to consider diffusion of adrenaline into a homoge-
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neous, fully swollen spherical matrix, even if one should bear
in mind that the real matrix cannot be immediately swollen
and that its spherical shape cannot be maintained in the
course of swelling since the partial masking by the membrane
creates an assymmetry.

Finally, the microelectrode is in close vicinity with the cell
membrane and its potential set on the oxidation wave of
adrenaline. These features, especially considering that the
diffusion coefficient of the adrenaline cation in the extrac-
ellular fluid (D, =6 x 107° cm?s~') ought to be much larger
than that inside the swollen vesicle (D ~10-%-10"7 cm?s~1,[12"]
vide infra), allow us to assume that the concentration of the
adrenaline cation is maintained at zero on the matrix border
exposed to the extracellular fluid.

This whole set of considerations permits us propose the
simple model sketched in Figure 2. The vesicle matrix is
represented by a spherical volume of radius R, the swollen

P 7

electrode
extracellular | | Ay
Sluid \
- membrane
cytoplasm
/- matrix

[

ca. 300 nm
Figure 2. Model used in this work. The matrix is represented by the
shadowed area and the fused cell and vesicle membranes by the solid thick
curves. In addition the Brownian motion of a particle in the matrix is
schematized along with its fast trapping by the electrode [Eq. (1)] as soon
as it is released into the extracellular fluid.

radius (R =¢R,, with ¢,,.,,~ 1.35 based on measurements on
mast cells). Since the cell (ca. 10 um radius) is considerably
larger than the vesicle, the cell membrane is represented by an
infinite plane which intersects the sphere so that an angle « is
defined. This intersection delimits two zones on the matrix
wall. On the part located under the cell membrane plane (a <
0 < m) the vesicle membrane is intact so that this section of the
vesicle wall remains impermeable to the adrenaline cation.
Conversely, the former section of the vesicle membrane
located above the plane (0 < 6 < a) has been already incorpo-
rated into the cell membrane, so that this zone of the matrix is
freely exposed to the extracellular medium. Its wall can be
crossed by the adrenaline cation to reach the solution and its
concentration is therefore maintained at zero on the wall due
to its immediate electrochemical consumption. Within this
framework, the evaluation of the current spike amounts to
determine the variation over time of the flux ¢ of moles of
adrenaline [viz., i =2F¢, where F is Faraday’s constant; see
Eq. (1)] crossing this opened wall when « varies as a function
of time ¢.

To proceed further, a normalization of parameters and
variables is necessary, because most geometrical and phys-
icochemical properties of the system are a priori unknown for
a given individual event, and are at best only known through
mean estimates which cannot be used for analyzing one
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particular spike. This normalization is performed through the
set of dimensionless variables defined in Equations (2)—(4),

time: = Dt/R>=1/t, 2)

p=r/R ©)

space:

number of moles: 1 =NI[(4/3)nR3(Cy/e%)] “4)
where R is the radius of the swollen matrix, r the radial
distance from the center of the spherical matrix, ¢ the
coefficient of expansion of the matrix (viz., ¢ = R/R,), C, the
initial concentration of adrenaline inside the unswollen
vesicle, and N the number of moles of adrenaline cation
contained at time ¢ inside the matrix (note that Ny=N,_,= (4/
3)R3(C,/e%) so that n(z =0) =1). With this set of dimension-
less variables, the dimensionless instantaneous flux of adrena-
line is given by Equation (5), where #,=R?%D, and the

flux: @(r)=dn/dr=d(t= t,7) x {t/[(4/3)(R/e)3Cy} 5)

amperometric current at any time ¢=1¢,=tR*D is readily
obtained from ¢(7) by means of Equation (6), so that solving

i(t)=[8tFDRC,/(3€%)] x ¢(r =t/ty) (6)

the problem amounts to determining the dimensionless
diffusion-controlled flux ¢(7) as a function of the dimension-
less time 7, starting from the initial condition =1, a=0 at
7=0.

II. Uncoupling between rate of fusion of membranes and
diffusion inside the matrix: The rate of fusion of the
membranes, that is, the function a(r), controls the time
variation of the matrix surface area exposed to the extrac-
ellular fluid, and therefore governs ¢(7). To the best of our
knowledge and savoir-faire it is impossible to produce a
general solution under such circumstances, especially since
a(t) is unknown. However, on the basis of the results of patch-
amperometric experiments (patch-clamp coupled with am-
perometry) we know that the variation of unwrapped surface
area X(t) (i.e., of a) occurs within a time range which is much
smaller than the actual half-width 7., of the current spike (see
Figure 1). This observation establishes that the rate of
depletion by diffusion within the matrix core is much smaller
than the rate of variation of the exposed surface area.
Therefore, the coupling between fusion and diffusion can be
treated at the level of a first-order filter approximation. In the
Laplace plane (s is the Laplace variable corresponding to ,
and the Laplace transform of a function is indicated by
underlining the real function) this means that the instant flux
@(s) is given by the direct product of the elementary flux per
unit of surface area, @(s)/4n, where @(s) would correspond to
the flux of a completely unwrapped vesicle (i.e., for a=
A (f), where # is the Heaviside unity step function) and
is normalized to the total surface of the sphere [i.e., 47 in the
dimensionless space, Eq. (3)], times 3(s), the Laplace trans-
form of the elementary surface area resulting from a variation
da during the elementary time dz, namely, of 3(r)=dX/dr.
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Thus we arrive at Equation (7), which shows that in the real
time space, the flux is given by the convolution integral of

()~ D()3(5) A @)

Equations (8) and (9), o(r) being the fraction of the vesicle
surface area that is exposed to the extracellular fluid at time
T=t/ty=Dt/R.

T

9

#0)= [ @-0 gdc ®)

where

/ 042D _ 15 11 - cosa(®)] = ox) ©)
A 4 4

The range of validity of the first-order approximation in
Equation (8) has been checked by Brownian motion simu-
lations and shown to be accurate provided that the spike
presents a rising branch that is sharper than its descending
branch, a prerequisite met by all experimental spikes. For
these checks a series of arbitrary o(t) sigmoidal functions was
generated and direct Brownian motion simulations were
performed to generate a corresponding series of @(7)
functions (see Appendix A). The choice of sigmoidal func-
tions for the o(t) functions in these tests is justified by the
patch-clamp observations (see Figure 1). From this series of
@(t) functions, a series Of 0. (7) functions was then
recovered through numerical deconvolution of Equation (8)

On the basis of the set of Equations (8)—(10), one may
predict the shape of any spike that corresponds to a given o(t)
opening function. Conversely, the same set allows extraction
of the o(r) function that corresponds to a given spike
expressed in dimensionless parameters (see Appendix B).
However, several difficulties arise owing to the fact that the
values of DRC/¢* and of t,=R?D are unknown for this
particular spike although they must be known in order to
rescale the real current spike into the dimensionless space as
required to solve Equation (8) (note that this was not a
difficulty in the above tests since all the calculations were
performed in the dimensionless space). Because of biological
variations, these parameters are expected to vary significantly
from their mean values, that is, even if their mean values
have been estimated previously (C, R and ¢) they can-
not be used for the treatment of one particular spike. In the
following section we explain how these difficulties can be
overcome.

B. Application to experimental spikes

L. Determination of ty=R%”D: An experimental spike is
obtained as a digitized current vs. time function i(f) (see
Figure 1). The integration of this function up to infinite time
affords the collected charge Q, which, as a result of the
collection efficiency of unity, is a measurement of the initial
amount of adrenaline molecules contained by the vesicle

[Eq. (AD)].

(see Appendix B) thanks to the independent knowledge of 0- 7 i(t)dt = 2F x Ny—2F x 4 R (&) an
the function @(7) (see Figure 3, Eq. (10) and Appendix C). A 3\&
‘I’(1)=% 1 S1]=67x1073 x 4851074 =<0 10)

0.59 132
—1.12[0.52x10‘56e_4'43t +11Ix(e 075 +l.181~1)}
1--e

Figure 3. a) Simulation of the function @(z) obtained by the averaging of
1000 individual Brownian simulations, each one performed in dimension-
less space using a set of n = (4/3)1/A3 particles disposed on a cubic network
of lattice A, with Brownian steps of length 4 and duration A2, for A =1/20 and
a=nA (t), where A# is the Heaviside unity step function; b) variations of
Y(r) = &D(7) x ' based on the simulated (7).

The validity of the approximation in Equation (8) was then
checked by examining the correlation between 0,..,(7) and
o(t) in each case. In all cases a perfect correlation (7 >~ 0.95 -
0.98, data not shown) was observed provided only that the
above requirement was met. These tests ensured that
Equation (8) is valid over the whole range of experimental
spikes. Furthermore, it is again verified during the analysis of
a single spike (vide infra, Section B.II).
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On the other hand, numerically it is more convenient to
work with normalized spikes, that is, with I(¢) = i(¢)/i.x, Since
the maximum current i,,,, of the spike is easily available.
Equation (8) is then rewritten in the real space as Equa-
tion (12), where t,= R*D, ¥is given by Equation (10), and 9/
4m is the derivative of the normalized opening function o

I(t =1ty) =— =- Fe 0 @dé (12)

N )
oy ), T 0) 4

it=14) Q

[Eq. (9)]. Evaluation of the variation of the opening function
o(t=t,r) based on the numerical deconvolution of Equa-
tion (12) requires independent knowledge of £,, yet this key
parameter is not easily available from an experimental spike.

However, let us consider the structure of Equation (12) and
the shape of a spike. From Equation (12), the spike shape
arises from the convolution of two phenomena. The first,
diffusion, is represented by @(tr) =¥(r)/\/r and is a rapidly
decreasing component with an infinite branch at 7=0. The
second, represented by 3(7), reflects the rate of unwrapping of
the vesicle membrane by fusion to the cell membrane, namely,
3=(do/d7r)4n. o, the fraction of the vesicle surface area
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exposed to the extracellular
fluid, is a steadily increasing

max

function of time as observed by =
patch-clamp techniques (com- =
pare Figure 1), so that 9 is Ll\
expected to have a bell shape. =
This rationale explains why in a 0 40
t (ms)

former workP< we used an ex-
ponentially modified gaussian
model for treating I(¢), the
gaussian component being a
first-level approximation for
the bell-shaped & function and
the exponential one being that for the rapidly decaying @ =
Y¥/,/t function. The extremely satisfactory fitting of more than
200 differently shaped experimental spikes (sharp or broad
ones) by this exponentially modified gaussian model there-
fore supports our present assumption on the bell shape
of 9.

Let us suppose now that one tries to solve Equation (12)
using an estimated value () of the unknown experimental
parameter ;. Two possibilities may occur. If ty. > £, in the
dimensionless space the current rises and decays faster than
the actual value, since the dimensionless time used is com-
pressed: Ty = tgyess < t/ty=7. This will force oy.(t), the
solution of Equation (12) for #,,, to increase too fast initially
and then to decay to compensate artificially for the fact that
the diffusional flux represented by @(7) = ¥(7)/\/t decays too
smoothly with respect to I(fyes7). Thus when .. > 1,, the
extracted function o,,.(f) is expected to present a maximum,
a fact which would contradict the patch-clamp data (see, for
example, Figure 1). Conversely, when f,,. <1, in the 7 space
the current rises and decays too slowly. 0,..(f) is then
expected to lag behind the true o(¢) function and therefore
must rise steadily without presenting any maximum, because
now the dimensionless time is dilated. Thus the correct ¢,
value is the largest f,, value for which the extracted function
Oguess(f) presents no maximum, that is, for which og.. /o =
1, where og is the limit of o(f) at large times and opuy the
maximum value of o(¢). This observation can be put into use
for the automatic determination of #, from any spike with a
good accuracy.

In practice, it is more advisable to perform this automatic
determination using a log—log plot, since we noted empiri-
cally that when t,,.. > fy, In (0 giess/Oguess) 18 close to linear when
plotted against In (fy,s). This property ensures fast determi-
nation of 7, based on a simple linear regression (see Fig-
ure 4b), a process that is easily computerized. Therefore, the
extraction of the opening function o(f) from a spike required
a) the evaluation of Q and i,,,, from the experimental current/
time i(f) curve; b) a series of deconvolution procedures (see
Appendix B) of Equation (12), which produce a series of
Oguess(f) functions [Eq. (9)] for each guessed value . of #;
¢) the determination of 7, as explained above; d) the final and
real deconvolution of Equation (12) using the determined
value of ¢, to produce the real o(¢) function. This sequence
was fully computerized in C™ language, the starting esti-
mated ¢, value being chosen as twice the half-width of the
experimental spike. With a Pentium 333 MHz, the whole

2156 ——

80 k=] 76 -5

© WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1999

40 80

In(r  / S-; ¢ (ms)

guess

Figure 4. a) Normalized experimental current spike (viz., I(t) =i(t)/i,,,) measured by amperometry during an
individual exocytotic secretion event observed with a chromaffin cell stimulated by Ba**; b) variations of In (of/
Oguess) V8. In (fyes;) as obtained for the spike in a), and determination of ¢, by the intersection of the two linear
regression lines (¢, =23 ms for the spike shown in a), see text; c) opening function o(¢) extracted by deconvolution
of Equation (12) applied to the data in a), based on f, determined in b).

procedure took less than ca. 10 s per spike to produce the final
o(t) and t,.

II. Precision of the extraction procedure and improved
extraction: In the previous section we have explained how
the critical time parameter ¢,= R*D can be evaluated for a
given experimental spike. o(¢) is then formally available from
any current spike by means of Equations (9) and (12).
However, a good precision on o(f) requires that the scaling
parameters k = Q/(imady) and ¢, to be used in Equation (12)
are likewise of good precision.

The main difficulty in evaluating k with precision stems
from the fact that although ¢, is evaluated through the above
procedure with a precision better than a few percent (most
generally by negative values observed empirically, vide infra),
0, the integrated charge of a current spike, is determined with
an estimated precision of 10-20 % percent, again by negative
values because the spike current integration cannot be
performed up to infinite times since either a) the spike is
truncated because a second spike featuring a second distinct
exocytotic event occurred before the current due to the first
one had reached the base line, or b) because the current
becomes too small and too close to the baseline after a few
half-widths. The error in i, (ca. 2%) is comparatively
negligible. The resulting error in o is thus expected to be of ca.
10-20% at most and to result mainly from the imprecision in
Q. In practice, this precision may be estimated by the limit of
o(?) at infinite time. This ought to correspond to 100 % of the
vesicle surface area (viz., limo(f) =1 for t — o) if complete
fusion occurs as is inferred from patch-clamp measurements.
Indeed, nothing in the present model forces the vesicle to fully
fuse with the membrane, so a poor precision of the overall
extraction of o(f) may be reflected by the fact that the
extracted function may well plateau before full opening, a
scenario which seems a physical nonsense in the current view
of exocytotic fusion events. In particular, owing to the
structure of Equation (12), it is seen that an error in x implies
only a rescaling of (). All the approximately 600 different
spikes treated through the procedure described in the
previous section produced o(¢) functions that reached their
expected limit value at better than a few percent, a fact that
shows that the error on x was less than the above estimations
because of partial error compensations.

When this precision is not sufficient or when the internal
consistency of the procedure needs to be checked, a complete
Brownian simulation of the problem can be performed. In the
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dimensionless space, a Brownian simulation requires o(7) as
the input, so that both o(¢) and ¢, are required. ¢, and the
function o(7 =1/t,) that have been obtained at the end of the
previous procedure can be used. Thus, the simulated current,
@sim(7), can be compared to the experimental normalized
current [(¢) =i(t)/in. From Equation (6) we can derive
Equation (13). This comparison requires the simple adjust
1(f) =k x @(t,7) (13)
ment of the two scaling parameters « (viz., k = 1/¢,,) and £,
so that the correlation between I(f) and I, (¢) is the best
possible (Figure 5, right column). Thus, a new set of k and ¢,
values, k™" and ¥, can be generated in order that the
maximum and half-width of the simulated I, (¢) =x"" x
@m(15°VT) coincide with those of the experimental (). r™V
and #,"¥ can then be used to generate a new o function, ™%,
by numerical deconvolution of Equation (12); this 6™ can be
used together with k"™ and #§*¥ to perform a second Brownian
simulation and the process repeated up to the point where x"%
and #§°V remain invariant within the precision required. The
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Figure 5. Left column (filled symbols): Normalized experimental current
spikes (I(t) =i(t)/ip,,) measured by amperometry during an individual
exocytotic secretion event observed at a chromaffin cell stimulated by Ba?*.
Left column (open symbols): Normalized current spikes simulated by the
Brownian procedure (4 =1/15; 10 simulations averaged) on the basis of the
o(t) functions shown in the middle column and 7,=24.3 (a), 30.1 (b), 33.1
(c), and 20.6 ms (d). Middle column: Variations of o(f), the normalized
surface area of the vesicle exposed to the extracellular fluid during each of
the exocytotic fusion events characterized by the current spikes shown in
the left column. Right column: Correlation between simulated and
experimental normalized current spikes.
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final check of the method consists in examining the whole
correlation between [, () and I(t) (see Figure 5, right
column). In practice, five iterations at most were required,
and resulted in #, values that increased by less than a few
percent compared with their estimation by the convolution
integral procedure, while Q could increase by as much as
10%, depending on the quality of the experimental current
integration. Again, the iterative process was fully computer-
ized (C** language). It took less than 5 to 10 min per spike
and per iteration on a Pentium 333 MHz. Each simulation was
in fact the average of 10 Brownian-independent simulations
performed with A =1/15 (see Appendix A) in order to reduce
the Brownian noise at long times. Much faster procedures
involving no averaging per Brownian simulation (30 s to 1 min
per iterative step) can be used, in particular during the first
iteration steps, since the long time branch is not used in the
rescaling procedure as this requires only /.., and #,,. Also,
Brownian procedures could be interrupted after ¢,,, (15t0 30 s
per iterative step). Nevertheless, we preferred to use the
longer iterative procedure at each iterative step since the time
consumption was not a problem for us.

Figure 5 shows the result of this iterative procedure as
applied to four different spikes selected for their very
different shapes and the different problems they pose so as
to be illustrative of the variety observed experimentally for
the approximately 600 different spikes that have been treated.
As illustrated by this representative set, the agreement
between experimental and simulated spikes is excellent.
However, it should be emphasized that although the iterative
procedure improved the correlation between I, (f) and I(z),
we observed that for most of the well-behaved spikes, that is,
for those in which the charge integration can be performed
with a reasonable accuracy and whose rising part is described
with sufficient time resolution (e.g., as in Figure 5a), the
iterative procedure was not necessary because the first
procedure was sufficiently accurate. Conversely, for the
poorly behaving spikes the iterative procedure improved the
fit between experimental and simulated currents. Figures 5b—
d illustrate the effectiveness of the iterative procedure by
presenting its final result on three representative poorly
behaving spikes. Thus even spikes in which the rising branch is
merged with a foot component (Figure 5b),% or with a
poorly time-resolved rising branch (Figure 5c) and even
truncated spikes (Figure 5d) in which Q cannot be determined
to a good precision through simple current integration can be
processed adequately.

C. Final comments

The parameters x and f, are determined as part of the
extraction procedure leading to the opening function o(z).
Although we focused in this work on the extraction of o(r)
from experimental spikes, it should be noted that x and ¢, are
rich in physicochemical information on the vesicle. Indeed,
{t,) = (R?’/D) gives the mean diffusion coefficient of adrena-
line in the swollen matrix, since (R;) =150 nm and (¢) =1.35
are known. Similarly, (kiy,)/2F = (Q)/2F = (N,) is the initial
mean content of adrenaline inside the vesicle, which gives
access to its internal initial mean concentration (C,). How-
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ever, such statistical data have to be determined from the
treatment of a large series of spikes. Such analyses will be
reported in a forthcoming paper!!'’l since this one is devoted
mostly to the presentation of the theory and the principle of
the extraction procedures. They led to (D) &~ 4.1 x 10 8cm?s !,
(Ny) =9 attomoles, and (Cy) ~ 0.60 M, that is, to values that are
consistent with previous determinations ({Ny) and (C,))#" >
or for the expected diffusion coefficient within a swollen
polyelectrolyte matrix.['?"]

We wish to focus our discussion here on the very particular
time-shape of the o(f) function since, to the best of our
knowledge, this is the first time that this function could be
determined with such precision and time resolution. The
shapes illustrated in the middle column of Figure5 are
perfectly representative of all those found for the series of ca.
600 spikes treated. As expected and inferred from patch-
clamp experiments, o(¢) has a sigmoidal shape. Yet one notices
immediately the profound disymmetry between the temporal
behaviors at short and long intervals. At short intervals, o(f)
consistently expands with a kind of explosive or autoaccel-
erated kinetic character, a feature that is maintained nearly up
to the half-unwrapping of the vesicle. The remainder of the
vesicle unwrapping proceeds with a much smoother pace and
has the shape expected for the resorption of a curvature in a
membrane.

Although a proper discussion of this peculiar behavior
requires a statistical treatment based on numerous spikes,
treatment that will be reported later together with the
aforementioned analyses, we wish to make some proposals
here that may explain this behavior and may have important
consequences for the rationalization of the passage from the
pore release to the spike.

Let us consider the simple model in Figure 2. As explained
and justified above, in the present work based on this model,
the spherical symmetry of the vesicle could be conserved
because we supposed the swelling to be sufficiently fast for the
kinetics inside the vesicle to be controlled by diffusion only. In
this model, swelling is thus kinetically and geometrically
transparent and allows only the diffusion coefficient of the
adrenaline cation to pass from nearly zero in the unswollen
matrix zones to a significant value ((D)~4 x 1078 cm?s™!) in
the swollen ones. However, let us consider now the more
realistic views sketched in Figure 6. When a < mt/2 (Figure 6a)
the convexity of the system means that the pressure increase
due to the matrix swelling creates a force that applies on the

Figure 6. Schematic representation of the effect of the forces (shown as
arrows) exerted by the matrix swelling according to the convexity of the
system, i.e., as a function of a. a): Casel (first half of membrane
unwrapping: 0 < a <m/2). b): Case II (second half of membrane unwrap-
ping: w/2<a<m). The swollen matrix is deeply shaded, while the
unswollen domain is lighter. In c) the variations of o(¢) are sketched with
the two limiting behaviors indicated in dashed lines: accelerated fusion
(case I, see a) and normal fusion (case II, see b); see text.
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membrane edges around a. This force contributes positively
and adds to all the others that provoke the resorption of the
curvature of the vesicle membrane, so that the rate of
unwrapping is expected to be faster than when such forces
do not apply. Moreover, this faster unwrapping opens faster
new domains of the vesicle wall to hydration and ion exchange
with the extracellular fluid, domains which then swell faster
and add to the force, and so on, so that the unwrapping rate
accelerates. Conversely, when a > nt/2 (Figure 6b), the system
becomes concave and the resulting force due to the matrix
swelling is no longer directed towards the membrane edge but
towards the top of the figure where expansion occurs freely by
simple displacement of the extracellular fluid. Thus the
kinetics of the membrane unwrapping is expected to slow
down and to behave as expected for a normal elastic
resorption of a membrane curvature. Thus, these simple
intuitive considerations on the different effects of the pressure
forces created by the swelling as a function of the convexity
(a < m/2) or the concavity (a > n/2) of the system geometry
explains qualitatively the peculiar behavior of o(f).

The same consideration on the crucial role of the swelling
pressure may be applied to the transition between the foot
and spike modes of release. Indeed, during the pore release,
the architecture of the pore/membrane assembly is main-
tained by the cohesion energy E.,n.. Of the ionic channel and
of its attachment to the cell and vesicle membrane.“
However, each catecholamine cation released through the
pore is necessarily replaced inside the vesicle by hydrated ions
from the extracellular fluid to satisfy electroneutrality. As
explained above, this exchange disrupts the polyelectrolyte
cohesion and is thus expected to provoke the swelling of the
zone altered. However, this altered zone should not swell
totally (that is, as during the spike release) because of the
space constriction, so that a significant compression energy
has to develop in this zone, being proportional to the number
of sites altered in the polyelectrolyte matrix. If the alteration
of the matrix structure by hydration and cation exchange
corresponds to an energy AE,; per site altered, and AN sites
are altered, the accumulated energy is AN x AE,;. Consider-
ing that the pore has opened during At, AN = i, At/(2F),
where i, is the constant foot plateau current. Since i, is
~5 pA,i>l approximately 10* sites are altered per milli-
second. Since (Cy)=0.6M, this corresponds to a rate of
volume alteration of ca. 3 x 10* nm*ms~!. The radius of the
unswollen vesicle (R,) being ~ 150 nm, this corresponds to a
significant alteration of the matrix. Every millisecond it
affects a domain of ca. 2%o. of the initial vesicle volume, a
domain whose radius is ca. 20 nm (specifically, 18 nm if the
altered zone is spherical or 22 nm if it is a hemispherical
capsule centered on the entrance of the pore).

Therefore, a pressure energy of ca. 10* AE,, builds up every
millisecond inside the matrix. This corresponds to an energy
10*AE,; (Rpore/R,)* ~ AE,, over the surface area of the pore.
It is thus expected that when the pore duration reaches
At (M8) = (AE anne/ AE,), the system reaches a threshold
point where the ionic channel architecture cannot hold the
increasing pressure any longer, so that it may have to close or
blow apart in order to release the internal pressure. Indeed,
since most of the pressure has to be localized near the docking
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point because it can only with difficulty be evacuated by
diffusion into the unswollen matrix, we presume that the
release of the accumulated energy will occur mostly in this
area. The resulting local nanoscopic explosion is then
expected to provide sufficient energy to bring up local
disorder in the face-to-face phospholipidic bilayers of each
membrane. By such a mechanism the electrostatic repulsion
between the negative heads of each phospholipidic bilayer
should be easily avoided. Thus, the fusion of the two
membranes may start by simple relaxation of the system
after the explosion.

For chromaffin cells, we estimate At,,,, to be of the order of
2ms from the amperometric results’! so that we obtain
AE annel/ AE ~ 1.

To conclude this discussion, it is interesting to note that if
one assumes that this figure is invariant for all kind of
secretory catecholamine vesicles which contain matrixes
similar to those of adrenal cells, a vesicle that contains less
than ca. (Np.,) ~2 x 10* molecules of neurotransmitter should
never be able to reach the point where fusion may start.
Indeed, the pore/membrane architecture will have enough
strength to hold the internal pressure even when the vesicle is
fully emptied. Compared with (R;) ~150 nm and (Ny) =5 x
10° molecules for chromaffin vesicles, this threshold figure
corresponds to a maximum radius of ca. (R.,) ~25nm. In
other words, on the basis of these considerations, a vesicle
with a radius smaller than 25 nm should be able to empty itself
completely through its pore without accumulating sufficient
compression energy to exceed that of the pore/membrane
architecture. Therefore, it should never be able to fuse
spontaneously. Conversely, a secretory vesicle with a radius
exceeding significantly 25 nm should always end by fusing
unless another mechanism closes the pore before the thresh-
old energetic point is reached. Although one should keep in
mind the still rudimentary aspects of this discussion and its
possible overgeneralization since it assumes an energetic
likeness between the inner components of different kinds of
vesicles and between their pore/membrane architectures, it is
interesting that the two above threshold limits, (N;,,,) ~2 X
10* molecules and (R,,,,) ~ 25 nm, are surprisingly close to the
values reported for synaptic cholinergic vesicles in neurons,
namely (N) ~10* molecules and (R) ~20 ~ 30 nm.['® In other
words, if this rudimentary prediction holds, synaptic vesicles
in neurons would be the largest vesicle possible that will allow
exocytosis without fusion; that is to say, in this respect they
would be the optimized exocytotic system in synapses.

Conclusion

In this work we have presented a method which allows the
extraction of the variations of the opening function o(¢) from
an experimental amperometric current spike featuring an
individual exocytotic secretion event. This method is based on
the recognition that the overall spike shape results from the
convolution of this opening function, which regulates the
fraction of the vesicle surface area that is exposed to the
extracellular fluid by a diffusion function that features the
diffusion and exchange of the catecholamine cation inside the
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matrix core of the vesicle. This convolution can be treated
mathematically to yield a convolution integral formulation
based on an approximation on the relative time scales of the
opening function and diffusion. It may also be treated
numerically without the need for this simplifying approxima-
tion by means of Brownian motion simulations. Despite its
better value because it involves a less approximated level, the
Brownian motion simulation approach requires the opening
function o(¢) function as its input. Conversely, the convolution
integral approach affords the o(f) function as its output.
Iterative combination of the two approaches thus permits the
extraction of the opening function with an excellent precision
and a resolution that has never been achieved before. As a
correlate of this analysis, several other parameters which
control the exocytotic physicochemical behavior are also
obtained, but as their analysis requires the statistical treat-
ment of a sufficient number of spikes these results will be
reported later.

The peculiar shape of the opening functions o(¢) hints at the
fact that the exocytotic events are intimately regulated by the
swelling of the matrix polyelectrolyte core of the vesicle,
although this important component is transparent in the
analysis proposed here. Indeed, depending on the extent of
the fusion, that is, whether the vesicle is less or more than half-
unwrapped, the convexity of the system changes. Thus, the
forces created by the gel matrix swelling accelerate the
unwrapping of the vesicle during the first phase when the
system is convex, while it plays a lesser role during the second
phase because the system is concave. This dichotomy is
reflected by the opening function o(f), which increases in an
explosive fashion during the first phase but slows down
considerably during the second phase.

This observation points to the important role of the matrix
swelling in the whole exocytotic behavior. In particular, this
effect may be elaborated in order to offer a possible new
energetic interpretation of the transition between pore
release and fusion release for those cells which contain
polyelectrolyte matrixes similar to those of adrenal cells. On
this basis, and assuming rather similar energetic behavior for
all kind of catecholamine secretory vesicle matrixes, secretory
vesicles can be separated into two classes according to their
radius and catecholamine content. Vesicles with a radius of
less than ~25 nm and containing less than ca. 20000 mole-
cules of catecholamines should never be able to accumulate a
sufficient compression energy to reach the explosion thresh-
old energetic point, so that they should always release through
channel docking. The other vesicles should always end up
fusing with the cell membrane, unless another mechanism
closes the pore before about ten thousand molecules of
catecholamines have been released.

Experimental Section

All the programs developed in this work were written in C** and ran on a
Pentium 333 MHz PC. The codes are available from the authors on
demand.

The current spikes presented in this work (Figure 4a and Figure 5, left
column a—d) were recorded by Eric Travis in Prof. R. Mark Wightman’s
group (University of North Carolina, Chapel Hill, USA). They served here
to establish the validity and the performances of the present analysis, since
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they are representative of a series of ~600 spikes which were recorded in
Wightman’s group and treated in our group with the present method in the
context of a collaborative work that will be reported later.l'” The five spikes
used here are shown with Wightman and Travis’s kind permission. The
following experimental details describe how the experiments were
conducted in Wightman’s group, and they are reported here with his
permission only for the reader’s information.

The spikes were recorded as previously described!®! from bovine adrenal
medullary (chromaffin) cells maintained in primary cultures. Experiments
were performed at 23.0£0.1°C between days 4 and 5 of culture. In the
experiments, the culture medium (Dulbecco’s modified Eagle’s medium/
Ham’s F12 medium, from Gibco Laboratories, Grand Island, NY, USA)
was replaced by a solution containing NaCl (154 mm), KCI (4.2mm), MgCl,
(0.7mm), glucose (11.2mwm), and 4-(2-hydroxyethyl)-1-piperazineethane-
sulfonic acid (HEPES, 10mm) brought to pH 7.4 with NaOH addition.
Exocytosis was elicited by 5-second pressure ejection of 5Smm Ba?*.Ped 52l
Flame-etched carbon-fiber microelectrodes (ca. 5um tip radius) were
constructed as described elsewhere.'”) To ensure the bielectronic oxidation
of adrenaline, the electrode potential was set at +0.650 V vs. SSCE
(saturated sodium calomel electrode). The electrochemical spikes were
measured with patch-clamp electronic equipment (Axopatch 200B, Axon
Instruments). The amperometric current was digitized to videotape and
later filtered through a fourth-order, low-pass (400 Hz) filter (CyberAmp
320, Axon Instruments), digitized at 0.5 ms/point and stored on a PC hard
drive. The digitization rate and filter frequency were selected so that
distortion of the temporal characteristics did not occur.
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Appendices

Appendix A. Brownian motion simulations: All the Brownian simulations
were performed in the dimensionless space [see Egs. (2)-(5)]. Thus the
matrix is represented by a sphere of radius unity and the dimensionless
diffusion coefficient is unity. The length step is 4 and therefore the time step
is A%. For ease and to ensure a homogeneous filling of the unit sphere, ca. (4/
323)m particles were positioned on a cubic network of lattice 1/4. It was
checked that this procedure did not change the results by comparison to a
random positioning of the ca. (4/34%) particles in the unit sphere. A
random vector V is sorted at each time step for each particle and the particle
is moved by ¥/(4|V|). This is repeated up to the time v when the particle
exits the sphere through the permeable area which is imposed by a(7). Then
the particle is counted and added to the flux ¢(7) at time 7. If the particle
hits the sphere wall at a time 7 where the wall is still impermeable as
imposed by a(7), it is bounced back using a perfect reflection condition so
that its overall step length remains 4.

The step length A influences the precision of ¢(7), since there are 1/4? time
points per unit of dimensionless time 7. Because the initial filling of the
sphere is also regulated by A—there are (4/34%)nt particles—this parameter
also controls the random noise in ¢(7) counts. To increase the signal-to-
noise ratio, either the lattice of the cubic network could be decreased by a
factor A, by considering ca. [4/3(A1)%]n particles, or by performing A3
identical simulations and averaging the A° independent ¢(7) after a while.
For convenience we chose the second solution. For the simulation of &(7)
we used 1000 independent simulations (1=1/20) since we needed an
extremely accurate solution at short and long times (see text), while for the
simulations of the current spikes (Figure 5) averaging 10 independent
simulations (with 4 =1/15) gave adequate precision.

For the tests of validity of the convolution integral formulation, sigmoidal
o(t) functions were generated: o(r) =1/{1+exp — [k(t —7,;,)], Where k
was varied (0.2 <k <2) to cover a range of spike shapes that encompassed
the experimentally observed ones. 7,, =5/k was adjusted in each case so
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that () <102 for T =0. These functions were used to perform Brownian
simulations (4 =1/15, 10 simulations average) to yield a series of simulated
current spikes ¢(7). Each of these simulated current spikes was deconvo-
luted (vide infra, Appendix B) with Equation (8) to give a corresponding
series of J..,(7) functions, from which the series of 0,...,(7) functions were
obtained through application of Equation (9). The correctness of Equa-
tion (8) was then ascertained by examining the correlation between ;¢ (7)
and the input function o(7) for each k value, as represented for I(¢)™ vs,
I(t)*** in the right column of Figure 5 (correlation coefficients were between
0.95 and 0.98). Furthermore, it is noted that the convergence of the iterative
procedure described in the text (Section B.II of Results and Discussion)
provides another series of positive tests of the validity of Equation (8), this
time for real current spikes.

Appendix B. Numerical deconvolution of Equations (8) or (12): The
procedure used is adapted from a previous classical work from this group
in the context of electrochemical problems.? It consists in rendering the
convolution integral in Equation (8) or (12) discrete with a dimensionless
time step At that: a) is imposed by the experimental digitizing time interval
(0.5 ms) of the experimental spikes and by #,, namely, At = At//t,=0.5/(t,/
ms), or b) was selected as a function of k, Ar=1/20k, during the test of
validity of Equation (8), so that the input o(t) was properly defined. Thus,
at any time v=mAt, Equation (8) or (12) can be rewritten as Equa-
tion (B1), where ¢(7)=4ng(r) for the dimensionless Equation (8), or
@(7) = 47 (imaxto/ Q) X I(t =1t,) for Equation (12). Note that in Equation (8),
@(t) must be replaced by ¥(z)/\/t for its resolution by the following
procedure.

(n+1)At

Y(r- C)S(C)

n=(m-1) n=(m-1)

Z tn  (BD

ac

nAt

Over the time interval [nAr,(n+1)Az], ¥ and $ are linearized, and the
resulting analytical integral y, is integrated analytically. Thus, noting ¥, =
Y(nAt) and 9,=9(nAt), one obtains Equations (B2) and (B3) for (e
[nAz,(n+1)At]. As a result, Equation (B4) holds [A,, B,, and C, are

’I/(T - g) =Y, .t (Wm—n—l - l‘Um—n)(é - ”At)/At (BZ)
30 =9, + (811 — %) — nAr)/At (B3)
In=A2x{A, 8, W, ut B [$(Pn1 = W)+ W (31— 90)]

F G s = 9) (Prrnor = Vo)) (B4)

defined in Egs. (B5)-(B7)], so that at each time step t=mAr, 9, =
3(mAt), for m>1, is obtained explicitly as the solution of the linear

4, 1/2 J ‘/M—*Z[n”z—m—l)”zl (BS)
By =" f,—idg 7 - (017220 - )1 (B6)
NnAT
2
o= % %{%[n”—(n %) (an - 1><n—1)”2} B7)

Equation (B8), where D, is as defined in Equation (B9), with ¢, =
@(mAT). For m =1, we obtain Equation (B10).

90 =[(15/¥,)D,, — 8,,_1(6 + 4W/W)]/(4 + 16Wy W) (B8)
1 n=(m-2)
D =——|¢, — B9
n = A [% 3 x] (B9)
9, =[(15/%)/(4 +16W,/¥)]@./V/ At (B10)

Iterative application of Equation (B8), starting with 9,=0 and $, given by
Equation (B10), affords the successive values 3,, of 9(7) at each time mesh
point T =mArt. The values of () or of a(z) at each point are then readily
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obtained through Equation (9) by trapezoidal numerical integration of
(7). It is noted that the values ¥, =¥ (r=0) and ¥, =¥(r=Ar) play a
crucial role at each step because of their involvement in Equations (B8)
and (B10). This is why great care must be taken in evaluating the function
Y(7) and its empirical analytical approximation in Equation (10). Similarly,
if the solution of Equations (8) or (12) had relied on @(7) [as strictly written
in Eq. (8)] instead of ¥(r)/\/t as given above [Eq. (B1)], an equation
similar to Equation (B8) would have been obtained, but instead with the
values @, = @(t —0) and @, = @(Ar) of @(t), which cannot be determined
because @(r) has an asymptotic branch at 7—0. With the present
formulation, the problem does not arise because the analytical integrations
in Equations (B5) — (B7) eliminate the infinite branch problem.

Appendix C. The @ function: The extraction of o(r) from an experimental
spike thanks to Equations (6), (8), and (9), requires the independent
knowledge of the function (). This function should be rather classical
since it corresponds to the diffusional emptying of a sphere under the
condition of zero concentration on its wall. However, we have not been
able to locate any trace of such a function in the literature. Therefore we
had to determine this function; we chose to achieve a numerical solution
through Brownian motion simulation.

The main difficulty is the evaluation of @(r) at short times 7. Indeed, by
analogy with the Cottrellian flux to a plane,I'"’ @(7) must present an infinite
branch at short times; specifically, @(t) o< 772 when 7 —0. This is precisely
the time domain where any numerical simulation (Brownian motion or
finite differences) is less precise. Furthermore, it is clear from the structure
of Equation (8) that @ must be very precise in the short time ranges, since
then @ has its largest weight in the convolution integral. To achieve the
necessary extremely accurate solution of @ at short times, it is preferable to
evaluate ¥(r)= ®(7)7r'? rather than &(r), since, on the basis of the
Cottrellian analogy, ¥(r) — ¥, when 7 —0, where ¥, is a constant. This is
not detrimental because either Equation (8) can be rewritten accordingly
or @(t) determined analytically from ¥(7).

A strict Cottrellian analogy (viz., planar diffusion limit at short times)
would readily give ¥,=3n""20'l However, even at short times when the
dimensionless thickness of the diffusion layer is much less than unity (i.e.,
than the vesicle dimensionless radius) the diffusion problem cannot be
assimilated to the planar case because of the concavity of the sphere.
Indeed, in such a case a particle located on the very wall of the sphere does
not have a 50 % chance of exiting the sphere after one Brownian step of
infinitely short length, in contrast to what occurs for a plane. To establish
this, let us consider a particle located in the sphere at a distance o (in the
dimensionless space) from the wall. By geometrical construction (from the
ratio of solid angles), the probability Q(J) that this particle exits the sphere
at the next Brownian step of length A and duration 6 =2? (note that D is
unity in the dimensionless space, so that 6=A%D =4%) is given by
Equation (C1) if 0 <0 < 4, or is zero when 4 < d. At r =0, the concentration

Q(8) = {1 + (A2 + 02 = 20)/[2A(1 — 0)]} (1)

is still homogeneous within the sphere, and equal to 3/4x in dimensionless
units, since 7(r =0) =1 by definition [Eq. (4)]. The fraction Ay of particles
exiting from the sphere during the Brownian step of duration 4> (in the
dimensionless time scale) is then given by Equation (C2), the flux of
particles that exit the sphere during this step being A® = Ay/A%, thus ¥, =
lim,_((An/A) =3/4.

P /A‘Q(é) 4n(1 - 0)do w_E (€2)
=— x 47(1 — = ——
7 4] 4 »

The second difficulty in Brownian motion evaluation of @(7) or ¥(r) arises
at infinite times. Indeed, in simulations of such conditions the flux of
particles exiting from the sphere becomes vanishingly small so that the @(7)
or ¥(r) Brownian values becomes chaotic when 7>>1, because the
Brownian noise then becomes larger than the signal. This important
difficulty can be eliminated: Owing to the conservation of matter, the
number of particles that exit from the sphere over an infinite time is equal
to the initial content of the sphere. Since 7(r =0) =1, @(7) and ¥(r) must
then obey the normalization requirement of Equation (C3).
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p(r=0)— / P(u)du= / q:/(z)duzl (C3)

Up to =35, 1000 Brownian simulations were performed and averaged to
decrease the Brownian noise at longer times. Each simulation was
performed with A=0.05 (i.e., with a step time 2.5 x 107%) and starting
from a set of ca. (4/3)m/A* particles located homogeneously within the
sphere on a cubic network of lattice A. The results are shown in Figure 3 in
terms of @(7) and ¥(7). Based on these results, the analytical empirical
expression of ¥(7) given in Equation (10) and which obeys the two above
conditions [Eq. (C3) and ¥, =3/4] was developed in order to facilitate the
numerical resolution of Equation (8).
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